Phenotypic plasticity of adult myocardium: molecular mechanisms.
نویسنده
چکیده
Cardiac phenotypic plasticity (so-called cardiac remodelling, CR) is characterized by changes in myocardial structure that happen in response to either mechanical overload or a loss of substance such as that occurring after myocardial infarction. Mechanosensation is a widespread biological process and is inextricably mixed with other transduction systems from hormones and vasopeptides, which ultimately produce post-translational modifications of transcription factors. The expression of the four main transcription factors during cardiogenesis is also enhanced as a link to foetal reprogramming. CR results from re-expression of the foetal programme, which is mostly adaptive, but also from several other phenotypic modifications that are not usually adaptive, such as fibrosis. (i) The initial determinant is mechanical, and re-expression of the foetal programme includes a global increase in genetic expression with cardiac hypertrophy, re-expression of genes that are normally not expressed in the adult ventricles, repression of genes not expressed during the foetal life, and activation of pre-exisiting stem cells. Microarray technology has revealed a coordinated change in expression of genes pertaining to signal transduction, metabolic function, structure and motility, and cell organism defence. The physiological consequence is a better adapted muscle. (ii) During clinical conditions, the effects of mechanics are modified by several interfering determinants that modify CR, including senescence, obesity, diabetes, ischemia and the neurohormonal reaction. Each of these factors can alter myocardial gene expression and modify molecular remodelling of mechanical origin. Finally, as compared to evolutionary phenotypic plasticity described in plants and insects in response to variations in environmental conditions, in CR, the environmental factor is internal, plasticity is primarily adaptive, and it involves coordinated changes in over 1400 genes. Study of reaction norms showed that the genotypes from different animal species are similarly plastic, but there are transgenic models in which adaptation to mechanics is not caused by hypertrophy but by qualitative changes in gene expression.
منابع مشابه
Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells.
It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their...
متن کاملThe phenotypic plasticity of the aquatic invertebrate Caenis latipennis in response to environmental conditions in the Kheirood Kenar River, Iran
Phenotypic plasticity is the capability of an organism to change its shape in response to the environmental condition. The present study aimed to investigate the phenotypic plasticity of the aquatic invertebrate Caenis latipennis using outline analysis. Samples were collected from up- and downstream of the Kheirood Kenar River, identified to the species level and photographed using a digital ca...
متن کاملThe effect of food type on phenotypic plasticity of sword tail, Xiphophurus helleri, during early ontogeny
Phenotypic plasticity is an important mechanism of phenotypic adaptation in response to environmental conditions. This study was conducted to investigate the effect of food type on the body shape of swordtail, Xiphoohurus helleri, during early development using geometric morphometric method. For this purpose, two treatments including feed by Artemia naupli and commercial Biomar diet were used i...
متن کاملReprogramming to developmental plasticity in cancer stem cells.
During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 12 شماره
صفحات -
تاریخ انتشار 2006